Predicting cancer origins with DNA Methylation
| dc.contributor.author | Djoumoi, Chaanraoui Ben | |
| dc.contributor.author | Charif, Charif Abdallah Yahaya | |
| dc.contributor.author | Youssouf, Rabianti Said | |
| dc.date.accessioned | 2024-01-18T06:13:46Z | |
| dc.date.available | 2024-01-18T06:13:46Z | |
| dc.date.issued | 2023-05-30 | |
| dc.description | Supervised by Mr. Tareque Mohmud Chowdhury, Assistant Professor, Department of Computer Science and Engineering(CSE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
| dc.identifier.citation | [Liu+19] Biao Liu et al. “DNA methylation markers for pan-cancer prediction by deep learning”. In: Genes 10.10 (2019), p. 778. [Xia+20] Daniel Xia et al. “Minimalist approaches to cancer tissue-of-origin classification by DNA methylation”. In: Modern Pathology 33.10 (2020), pp. 1874–1888. [ZX20] Chunlei Zheng and Rong Xu. “Predicting cancer origins with a DNA methylation-based deep neural network model”. In: PloS one 15.5 (2020), e0226461. [Koe+21] Christian Koelsche et al. “Sarcoma classification by DNA methylation profiling”. In: Nature communications 12.1 (2021), p. 498. | en_US |
| dc.identifier.uri | http://hdl.handle.net/123456789/2057 | |
| dc.language.iso | en | en_US |
| dc.publisher | Department of Computer Science and Engineering(CSE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
| dc.title | Predicting cancer origins with DNA Methylation | en_US |
| dc.type | Thesis | en_US |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- Thesis2023_CSE_180041156_180041253_180041254_Book - Charif Abdallah Yahaya Charif 180041253.pdf
- Size:
- 495.14 KB
- Format:
- Adobe Portable Document Format
- Description:
Loading...
- Name:
- Turnitin Report_ 2023_180041156_180041253_180041254_PlagiarismReport - Charif Abdallah Yahaya Charif 180041253.pdf
- Size:
- 2.86 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: