Cognitive Radio based Carrier Adaptation to the Doppler Spread of NB-IoT using performance analysis

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh

Abstract

Description

Supervised By: Dr. Mohammed T. Kawser Associate Professor, Department of Electrical and Electronic Engineering Islamic University of Technology

Keywords

Citation

[1] Mohammad T. Kawser, “LTE Air Interface Protocols”, Artech House, Boston, USA (2011). ISBN: 978-1-60807-201-9 [2] Alberto Rico-Alvariño, Madhavan Vajapeyam, Hao Xu, Xiaofeng Wang, Yufei Blankenship, Johan Bergman, Tuomas Tirronen, and Emre Yavuz,” An Overview of 3GPP Enhancements on Machine to Machine Communications”. [3] Kais Mekkia,∗, Eddy Bajica, Frederic Chaxela, Fernand Meyerb,” A comparative study of LPWAN technologies for large-scale IoT deployment”. [4] Sergio Martiradonna, Alessandro Grassi, Giuseppe Piro, Luigi Alfredo Grieco, and Gennaro Boggia,”An open source platform for exploring NB-IoT system performance”. [5] Benny Vejlgaard1, Mads Lauridsen1, Huan Nguyen1, Istv´an Z. Kov´acs2, Preben Mogensen1,2, Mads Sørensen, “Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-IoT”. [6] MIN CHEN1,2, (Senior Member, IEEE), YIMING MIAO1, YIXUE HAO1, (Senior Member, IEEE), AND KAI HWANG3, (Life Fellow, IEEE),” Narrow Band Internet of Things”. [7] Luca Feltrin, Galini Tsoukaneri, Massimo Condoluci, Chiara Buratti, Toktam Mahmoodi, Mischa Dohler, and Roberto Verdone “Narrowband IoT: A Survey on Downlink and Uplink Perspectives”. [8] [9] J. Schlienz and D. Raddino, “Narrowband Internet ofThings,” White Paper, Aug. 2016. R. Ratasuk et al., “Overview of Narrowband IoT in LTE Rel-13,” 2016 IEEE Conf. Standards for Commun. and Networking, Oct. 2016, pp. 1–7. [9] [ N. Mangalvedhe, R. Ratasuk, and A. Ghosh, “NB-IoT Deployment Study for Low Power Wide Area Cellular IoT,” 2016 IEEE 27th Annual Int’l. Symp. Personal, Indoor, and Mobile Radio Commun., Sept 2016, pp. 1–6. [10]A. Adhikary, X. Lin, and Y. P. E. Wang, “Performance Evaluation of NB-IoT Coverage,” 2016 IEEE VTC-Fall, Sept 2016, pp. 1–5. [11]3GPP TS 23.682, “Architecture Enhancements to Facilitate Communications with Packet Data Networks and Applications,” 2017; https://portal.3gpp.org. [12] GSMA, “NB-IoT Deployment Guide to Basic Feature Set Requirements,” White Paper, Aug. 2017. [13]GSMA, “3GPP Low Power Wide Area Technologies,GSMA White Paper,” tech. rep., Oct. 2016. [14] 3GPP TS 37.868, “Study on RAN Improvements for Machinetype Communications,” 2017; https://portal.3gpp.org. [15]Y. D. Beyene et al., “On the Performance of Narrow-Band Internet of Things (NB-IoT),” 2017 IEEE Wireless Communication and Networking Conf., Mar. 2017, pp. 1–6. [16]Cellular networks for massive IoT-enabling low power wide area applications, white paper, 2016. Ericsson. [Online]. Available: {https://www.ericsson.com/res/docs/whitepapers/wp iot.pdf} 74 [17]Visual Network Index (VNI) Complete Forecast Highlights, 2016. Cisco. [Online]. Available:{http://www.cisco.com/c/dam/m/en us/solutions/service-provider/vni-forecast-highlights/pdf/Global 2020 Forecast Highlights.pdf} [18] J. Pet¨aj¨aj¨arvi, K. Mikhaylov, M. H¨am¨al¨ainen, and J. Iinatti, “Evaluation of LoRa LPWAN technology for remote health and wellbeing monitoring,”in 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT), March 2016, pp. 1–5. [19] Sigfox. [Online]. Available: https://www.lora-alliance.org [20] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver, “IEEE802.11AH: the WiFi approach for M2M communications,” IEEE Wireless Communications, vol. 21, no. 6, pp. 144–152, December 2014. New Work Item: NarrowBand IOT (NB-IOT). TSG RAN Meeting #69, 2015. 3GPP. [Online]. Available: {www.3gpp.org/FTP/tsg ran/TSGRAN/TSGR 69/Docs/RP-151621.zip} [21] New Study Item on Cellular System Support for Ultra Low Complexityand Low Throughput Internet of Things. TSG-GERAN Meeting #62,2015. 3GPP. [Online]. Available: {http://www.3gpp.org/ftp/tsg geran/TSG GERAN/GERAN 62 Valencia/Docs/GP-140421.zip}TS 36.211 Evolved Universal Terrestrial Radio Access (E-UTRA) physical channels and modulation (Release 13), 2016. 3GPP. [Online]. Available: {http://www.3gpp.org/ftp/specs/archive/23 series/23.060/23060-3c0.zip} [22]TS 36.213 Evolved Universal Terrestrial Radio Access (EUTRA); Physical layer procedures (Release 13), 2016. 3GPP.[Online]. Available: {http://www.3gpp.org/ftp//Specs/archive/36 series/36.213/36213-d20.zip}TS 36.321 Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 13), 2016. 3GPP. [Online]. Available: {http://www.3gpp.org/ftp//Specs/archive/36 series/36.321/36321-d20.zip} [23]Aalto University, “Researchers implemented a prototype for Narrowband Internet-of-Things system,” Press Release, 28 June 2016. [Online]. Available: {http://elec.aalto.fi/en/current/news/2016-06-28/} [24]Ettus research, August 2016. [Online]. Available: http://ettus.com [25] USRP X300 and X310 Spec Sheet, 2016. Ettus Research. [Online]. Available: {https://www.ettus.com/content/files/X300 X310Spec Sheet.pdf} [26]Z. Dawy et al., “Toward Massive Machine Type Cellular Communications,” IEEE Wireless Commun., vol. 24, no. 1, Feb. 2017, pp. 120–28. [27]M. R. Palattella et al., “Internet of Things in the 5G Era: Enablers, Architecture, and Business Models,” IEEE JSAC, vol. 34, no. 3, Mar. 2016, pp. 510–27. [28]H. Wang and A. O. Fapojuwo, “A Survey of Enabling Technologies of Low Power and Long Range Machine-to-Machine Communications,” IEEE Commun. Surveys & Tutorials, vol. 19, no. 4, 4th qtr. 2017, pp. 2621–39. [29]Y. P. E. Wang et al., “A Primer on 3GPP Narrowband Internet of Things,” IEEE Commun. Mag., vol. 55, no. 3, Mar.2017, pp. 117–23. [30]3GPP TS 36.321, “Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) Protocol Specification,” 2017; https://portal.3gpp.org. 75 [31]3GPP TS 36.213, “Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Layer Procedures,” 2017; https://portal. 3gpp.org. [32]3GPP TS 36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Channels and Modulation,” 2017; https://portal.3gpp.org. [33] 3GPP TS 36.331 “Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC) Protocol Specification,” 2017; https://portal.3gpp.org. [34] J. Schlienz and D. Raddino, “Narrowband Internet of Things,” White Paper, Aug. 2016. [35] R. Ratasuk et al., “Overview of Narrowband IoT in LTE Rel-13,” 2016 IEEE Conf. Standards for Commun. and Networking, Oct. 2016, pp. 1–7. [36]N. Mangalvedhe, R. Ratasuk, and A. Ghosh, “NB-IoT Deployment Study for Low Power Wide Area Cellular IoT,” 2016 IEEE 27th Annual Int’l. Symp. Personal, Indoor, and Mobile Radio Commun., Sept 2016, pp. 1–6. [37]A. Adhikary, X. Lin, and Y. P. E. Wang, “Performance Evaluation of NB-IoT Coverage,” 2016 IEEE VTC-Fall, Sept 2016, pp. 1–5. [38] 3GPP TS 23.682, “Architecture Enhancements to Facilitate Communications with Packet Data Networks and Applications,” 2017; https://portal.3gpp.org. [39]GSMA, “NB-IoT Deployment Guide to Basic Feature Set Requirements,” White Paper, Aug. 2017. [40]GSMA, “3GPP Low Power Wide Area Technologies, GSMA White Paper,” tech. rep., Oct. 2016. [41]Ericsson, “Ericsson Mobility Report,” tech. rep., Nov. 2016. [42]3GPP TS 37.868, “Study on RAN Improvements for Machinetype Communications,” 2017; https://portal.3gpp.org. [43] Y. D. Beyene et al., “On the Performance of Narrow-Band Internet of Things (NB-IoT),” 2017 IEEE Wireless Commun. and Networking Conf., Mar. 2017, pp. 1–6. [44]F. Boccardi et al., “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, Feb. 2014, pp. 74–80. [45]ETSI GS LTN 003, “Low Throughput Networks (LTN); Protocols and Interfaces v. 1.1.1 (2014-09).” [46]3GPP TS 36.306, “E-UTRA, UE Radio Access Capabilities (Release 12, v.12.7.0),” 2015. [47] 3GPP TS 23.682, “Architecture Enhancements to Facilitate Communications with Packet Data Networks and Applications (Release 12, v.12.4.0),” 2015. [48]3GPP, “TR 36.888 Study on Provision of Low-Cost MTC UE Based on LTE, v. 12.0.0,” 2013. [49]R. Ratasuk, N. Mangalvedhe and A. Ghosh, “Extending LTE Coverage for Machine Type Communications,” Proc. IEEE 2nd World Forum on Internet of Things, Milan, Italy, 2015. [50] M. Kasparick et al., “Bi-Orthogonal Waveforms for 5G Random Access with Short Message Support,” Proc. 20th Euro. Wireless Conf., Barcelona,Spain, 2014. [51]W. Dai, M. Qiu, L. Qiu, L. Chen, and A. Wu, ``Who moved my data? Privacy protection in smartphones,'' IEEE Commun. Mag., vol. 54, no. 1, pp. 20_25, Jan. 2017. [52]M. Qiu and E. H.-M. Sha, ``Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems,'' ACM Trans .Design Autom. Electron. Syst., vol. 14, no. 2, pp. 1_30, 2009. 76 [53]M. Qiu, Z. Ming, J. Li, K. Gai, and Z. Zong, ``Phase-change memory optimizationfor green cloud with genetic algorithm,'' IEEE Trans. Comput.,vol. 64, no. 12, pp. 3528_3540, Dec. 2015. [54]Y. Li and M. Chen, ``Software-de_ned network function virtualization: A survey,'' IEEE Access, vol. 3, pp. 2542_2553, 2015. [55]X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, ``Vehicular fog computing: A viewpoint of vehicles as the infrastructures,'' IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 3860_3873, Jun. 2016. [56]F. Xu,Y. Li, H.Wang, P. Zhang, and D. Jin, ``Understanding mobile traf_c patterns of large scale cellular towers in urban environment,'' IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1147_1161, 2015. [57]Y. Li, F. Zheng, M. Chen, and D. Jin, ``A uni_ed control and optimization framework for dynamical service chaining in software-de_ned NFV system,'' IEEE Wireless Commun., vol. 22, no. 6, pp. 15_23, Dec. 2015. [58]F. Xu, Z. Tu, Y. Li, P. Zhang, X. Fu, and D. Jin, ``Trajectory recovery from ash: User privacy is not preserved in aggregated mobility data,'' in Proc. 26th Int. Conf. World Wide Web, 2017, pp. 1241_1250. [59]X. Ge, Z. Li, and S. Li, ``5G software de_ned vehicular networks,'' IEEE Commun. Mag., vol. 55, no. 7, pp. 87_93, Jul. 2017. [60]F. Xu, Y. Li, M. Chen, and S. Chen, ``Mobile cellular big data: Linking cyberspace and the physical world with social ecology,'' IEEE Netw., vol. 30, no. 3, pp. 6_12, Jun. 2016. [61]Cellular System Support for Ultra-Low Complexity and Low Throughput Cellular Internet of Things, document 3GPP TR 45.820, 2015. [62]E-UTRA Physical channels and modulation_Chap.10 Narrowband IoT, document 3GPP TS 36.211, 2016. [63]3GPP. (2016). Standardization of NB-IOT Completed. [Online]. Available: http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_ complete [64] (2016). Standards for the Iot. [Online]. Available: http://www.3gpp.org/news-events/3gpp-news/1805-iot_r14 [65]C. Hoymann et al., ``LTE release 14 outlook,'' IEEE Commun. Mag.,vol. 54, no. 6, pp. 44_49, Jun. 2016. [66]P. Reininger, ``3Gpp standards for the Internet-of-Things,'' Huawei, Shenzhen, China, Tech. Rep. 3GPP RAN WG 3, 2016. [67]X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, ``5G software de_ned vehicular networks,'' 5G Ultra-Dense Cellular Netw., vol. 23, no. 1,pp. 72_79, 2016. [68] ``5G wireless technology framework,'' IMT-Adv. Propulsion Group, China, Tech. Rep. IMT2020 (5G), 2015. [69] Standardization of Machine-Type Communications, document TR 23.888, 3GPP, 2014. [70]Feasibility Study on New Services and Markets Technology Enablers for Massive Internet of Things,, document TR 22.861, 3GPP, 2016. [71]Feasibility Study on New Services and Markets Technology Enablers_Critical Communications, document TR 22.862, 3GPP, 2016. [72]M. Chen,Y. Qian,Y. Hao,Y. Li, and J. Song, ``Data-driven computing and caching in 5G networks: Architecture and delay analysis,''IEEEWireless Commun., vol. 25, no. 1, 2018. [73]Huawei R & D Department, ``NB-IoT solution introduction,'' Huawei, Shenzhen, China, Tech. Rep., 2016. 77 [74]M. Science and T. People's Republic China. (2015). Circular on the Application of the National Science and Technology MajorProject of the new Generation Broadband Wireless MobileCommunication Network in 2016. [Online]. Available: http://www.most.gov.cn/tztg/201508/t20150803_120898.htm [75] (2017). Circular on the Application of the National Science andTechnology Major Project of the new Generation Broadband Wire-less Mobile Communication Network in 2017. [Online]. Available:http://www.miit.gov.cn/n1146290/n4388791/c5356011/content.html [76]China Datang Corp., ``NB-IoT and related cases of transitive networks,''World Mobile Congress, Shanghai, China, 2016. [77] A. Rico-Alvarino, M. Vajapeyam, H. Xu, and X. Wang, ``An overview of 3GPP enhancements on machine to machine communications,'' IEEE Commun. Mag., vol. 54, no. 6, pp. 14_21, Jun. 2016. [78]Ericsson, ``Cellular networks for massive IoT,'' Ericsson, Stockholm, Sweden, Tech. Rep., 2016. [79] RIoT, ``Low power networks hold the key to Internet of Things,'' Berlin,Germany, Tech. Rep., 2015. [80] D. Guo-Hua andY. Jun-Hua, ``Research on NB-IoT background, standard development, characteristics and the service,'' Mobile Commun., vol. 40, no. 7, pp. 31_36, 2016. [81]Z. Yulong, D. Xiaojin, andW. Quanquan, ``Key technologies and application prospect for NB-IoT,'' ZTE Technol., vol. 23, no. 1, pp. 43_46, 2017. [82] X. Ge et al., ``Energy-ef_ciency optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints,'' IEEE Trans. Veh. Technol., vol. 63, no. 5, pp. 2127_2138, May 2014. [83]Q. Xiaocong and M. Mingxin, ``NB-IoT standardization, technical characteristics and industrial development,'' Inf. Res., vol. 5, pp. 23_26, May 2016. [84]L. Wei, D. Jiangbo, and L. Na, ``NB-IoT key technology and designsimulation method,'' Telecommun. Sci., vol. S1, pp. 144_148, Jun. 2016. [85] J. J. Nielsen, D. M. Kim, G. C. Madueno, P. Popovski, and N. K. Pratas, ``A tractable model of the LTE access reservation procedure for machinetype communications,'' in Proc. IEEE Global Commun. Conf., Dec. 2015, pp. 1_6. [86] M. Islam, A.-E. Taha, and S. Akl, ``A survey of access management techniques in machine type communications,'' IEEE Commun. Mag., vol. 52, no. 4, pp. 74_81, Apr. 2014. [87]F. A. Tobagi, ``Distributions of packet delay and interdeparture time inslotted aloha and carrier sense multiple access,'' J. ACM, vol. 29, no. 4,pp. 907_927, 1982. [88] J.-B. Seo and V. C. M. Leung, ``Design and analysis of backoff algorithmsfor random access channels in UMTS-LTE and IEEE 802.16 systems,''IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3975_3989, Oct. 2011. [89] C.-H.Wei, R.-G. Cheng, and S.-L. Tsao, ``Performance analysis of grouppaging for machine-type communications in LTE networks,'' IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3371_3382, Sep. 2013. [90]A. Laya, L. Alonso, and J. Alonso-Zarate, ``Is the random access channel of LTE and LTE-A suitable for M2M communications? A survey of alternatives,'' IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 4_16, Feb. 2014. 78 [91]M. E. Rivero-Angeles, D. Lara-Rodriguez, and F. A. Cruz-Perez, ``Access delay analysis of adaptive traf_c load_Type protocols for S-ALOHA and CSMA in EDGE,'' in Proc. IEEE Wireless Commun. Netw., vol. 3. Mar. 2003, pp. 1722_1727. [92]A. Mutairi, S. Roy, and G. Hwang, ``Delay analysis of OFDMA-aloha,''IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 89_99, Jan. 2013. [93]Y. Yang and T. S. P. Yum, ``Delay distributions of slotted ALOHAand CSMA,'' IEEE Trans. Commun., vol. 51, no. 11, pp. 1846_1857, Nov. 2003. [94]C. H. Wei, P. C. Lin, and R. G. Cheng, ``Comment on `An ef_cientrandom access scheme for OFDMA systems with implicit message transmission',''IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 414_415,Jan. 2013. [95]R. R. Tyagi, F. Aurzada, K.-D. Lee, and M. Reisslein, ``Connection establishmentin LTE-A networks: Justi_cation of poisson process modeling,''IEEE Syst. J., to be published, doi:10.1109/JSYST.2014.2387371. [96] P. Sergio, Study on MTC and Other Mobile Data Applications Communi-cations Enhancements, document TR 23.887, 3GPP, Sep. 2013. [97] Service Aspects and Service Principles, document G. T. 22.101, 2015. [98]R. G. Cheng, C. H. Wei, S. L. Tsao, and F. C. Ren, ``Rach collisionprobability for machine-type communications,'' in Proc. Veh. Technol. Conf., 2012, pp. 1_5. [99] J. Xin, Z. Xiaoping, T. Xiaoheng, T. Mi, and M. Lijuan, ``Improved multichannels-aloha transient performance analysis method and its application,''J. Electron. Inf., vol. 38, no. 8, pp. 1894_1900, 2016. [100] D. Raychaudhuri and J. Harman, ``Dynamic performance of ALOHA-type VSAT channels: A simulation study,'' IEEE Trans .Commun., vol. 38, no. 2, pp. 251_259, Feb. 1990. [101] Q. Ren and H. Kobayashi, ``Transient analysis of media access protocols by diffusion approximation,'' in Proc. IEEE Int. Symp. Inf. Theory, Sep. 1995, p. 107. [102] C. H. Wei, G. Bianchi, and R. G. Cheng, ``Modeling and analysis of random access channels with bursty arrivals in OFDMA wireless networks,''IEEE Trans.Wireless Commun., vol. 14, no. 4, pp. 1940_1953, Apr. 2015. [103] C. H. Wei, R. G. Cheng, and S. L. Tsao, ``Modeling and estimation of one-shot random access for _nite-user multichannel slotted ALOHA systems,'' IEEE Commun. Lett., vol. 16, no. 8, pp. 1196_1199, Aug. 2012. [104] B. Yang, G. Zhu, W. Wu, and Y. Gao, ``M2m access performance in LTE-a system,'' Trans. Emerg. Telecommun. Technol., vol. 25, no. 1, pp. 3_10, 2014. [105] G. C. Madueño, C. Stefanovi¢, and P. Popovski, ``Reengineering GSM/GPRS towards a dedicated network for massive smart metering,''in Proc. SmartGridComm, Nov. 2014, pp. 338_343. [106] M. Centenaro and L. Vangelista, ``A study on M2M traf_c and its impact on cellular networks,'' in Proc. Internet Things, 2015, pp. 154_159. [107] Ericsson, ``Downlink CCCH capacity evaluation for MTC,'' Stockholm, Sweden, Tech. Rep. G. GP-100893, 2010. [108] ZTE R & D Department, ``LTE MTC LTE simulations,'' ZTE, China, Tech. Rep. G. R2-104663, 2010. 79 [109] P. Osti, P. Lassila, S. Aalto, A. Larmo, and T. Tirronen, ``Analysis of PDCCH performance for M2M traf_c in LTE,'' IEEE Trans. Veh. Technol., vol. 63, no. 9, pp. 4357_4371, Nov. 2014. [110] G.-Y. Lin, S.-R. Chang, and H.-Y. Wei, ``Estimation and adaptation for bursty LTE random access,'' IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2560_2577, Apr. 2016. [111] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, ``A scalable and quick-response software de_ned vehicular network assisted by mobile edge computing,'' IEEE Commun. Mag., vol. 55, no. 7, pp. 94_100, Jul. 2017. [112] L. Dai, ``Stability and delay analysis of buffered aloha networks,'' IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 2707_2719, Aug. 2012. [113] M. E. Rivero-Angeles, D. Lara-Rodriguez, and F. A. Cruz-Perez, ``Gaussian approximations for the probability mass function of the access delay for different backoff policies in S-ALOHA,'' IEEE Commun. Lett., vol. 10, no. 10, pp. 731_733, Oct. 2006. [114] M. Koseoglu, ``Lower bounds on the LTE-a average random access delay under massive m2m arrivals,'' IEEE Trans. Commun., vol. 64, no. 5, pp. 2104_2115, May 2016. [115] Z. Li, ``Research on low cost MTC indoor coverage enhancement technology,'' Ph.D. dissertation, School Commun. Eng., Chongqing Univ., Chongqing, China, 2014. [116] Q. Xintao, ``Research on coverage enhancement and resource allocation of M2M communication based on LTE-advanced,'' Ph.D. dissertation, School Commun. Eng., Beijing Jiaotong Univ., Beijing, China, 2015. [117] G. Naddafzadeh-Shirazi, L. Lampe, G. Vos, and S. Bennett, ``Coverage enhancement techniques for machine-to-machine communications over LTE,'' IEEE Commun. Mag., vol. 53, no. 7, pp. 192_200, Jul. 2015. [118] L. Bin, ``Discussion on Internet of Things coverage enhancement technology of NB-IoT,'' Mobile Commun., vol. 40, no. 19, pp. 55_59, 2016. [119] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge Univ. Press, 2005, pp. 25_55. [120] Y. Fan, Z. Xiaoping, J. Xin, Z. Jihua, R. Dingliang, and G. Yiwen, ``An adaptive modulation algorithm for non data aided error vector magnitude in fast time-varying channels,'' J. Commun., vol. 38, no. 3, pp. 73_82, 2017. [121] X. Ge, J. Yang, H. Gharavi, and Y. Sun, ``Energy ef_ciency challenges of 5G small cell networks,'' IEEE Commun. Mag., vol. 55, no. 5, pp. 184_191, 2017. [122] Huawei R & D Department, ``Discussion on REL-13 NB-IoT evaluations,'' Huawei, Shenzhen, China, Tech. Rep. G. RP-161006, 2016. [123] S.-R. Yang and Y.-B. Lin, ``Modeling UMTS discontinuous reception mechanism,'' IEEE Trans. Wireless Commun., vol. 4, no. 1, pp. 312_319, Jan. 2005. [124] S. Jin and D. Qiao, ``Numerical analysis of the power saving in 3GPP LTE advanced wireless networks,'' IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1779_1785, Apr. 2012. [125] C.-C. Tseng, H.-C. Wang, F.-C. Kuo, K. C. Ting, H. H. Chen, and G. Y. Chen, ``Delay and power consumption in LTE/LTE-A DRX mechanism with mixed short and long cycles,'' IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1721_1734, Mar. 2016. 80 [126] H. Ramazanali and A. Vinel, ``Performance evaluation of LTE/LTE-A DRX: A Markovian approach,'' IEEE Internet Things J., vol. 3, no. 3, pp. 386_397, 2016. [127] A. T. Koc, S. C. Jha, R. Vannithamby, and M. Torlak, ``Device power saving and latency optimization in LTE-A networks through DRX con_guration,'' IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2614_2625, May 2014. [128] K. Zhou, N. Nikaein, and T. Spyropoulos, ``LTE/LTE-A discontinuous reception modeling for machine type communications,'' IEEE Wireless Commun. Lett., vol. 2, no. 1, pp. 102_105, Feb. 2013. [129] T. Tirronen, A. Larmo, J. Sachs, B. Lindoff, and N. Wiberg, ``Machineto-machine communication with long-term evolution with reduced device energy consumption,'' Trans. Emerg. Telecommun. Technol., vol. 24, no. 4, pp. 413_426, 2013. [130] N. M. Balasubramanya, L. Lampe, G. Vos, and S. Bennett, ``DRX with quick sleeping: A novel mechanism for energy-ef_cient IoT using LTE/LTE-A,'' IEEE Internet Things J., vol. 3, no. 3, pp. 398_407, Mar. 2016. [131] A. Chockalingam and M. Zorzi, ``Energy ef_ciency of media access protocols for mobile data networks,'' IEEE Trans. Commun., vol. 46, no. 11, pp. 1418_1421, Nov. 1998. [132] Y. Yang and T. P. Yum, ``Analysis of power ramping schemes for UTRA-FDD random access channel,'' IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2688_2693, Nov. 2005. [133] G. Zhang, A. Li, K.Yang, L. Zhao, and D. Cheng, ``Optimal power control for delay-constraint machine type communications over cellular uplinks,'' IEEE Commun. Lett., vol. 20, no. 6, pp. 1168_1171, Jun. 2016. [134] H. S. Dhillon, H. C. Huang, H. Viswanathan, and R. A. Valenzuela, ``Power-ef_cient system design for cellular-based machine-to-machine communications,'' IEEE Trans. Wireless Commun., vol. 12, no. 11, pp. 5740_5753, Nov. 2013. [135] K. Lin, D. Wang, F. Xia, and H. Ge, ``Device clustering algorithm based on multimodal data correlation in cognitive Internet of Things,'' IEEE Internet Things J., to be published. [136] Huawei R & D Department, ``Modeling and experiential evaluation of vertical industry in IoT,'' Huawei, Shenzhen, China, Tech. Rep., 2016. [137] K. Lin, J. Song, J. Luo, W. Ji, M. S. Hossain, and A. Ghoneim, ``Green video transmission in the mobile cloud networks,'' IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 1, pp. 159_169, Jan. 2017. [138] F. Francois, O. H. Abdelrahman, and E. Gelenbe, ``Impact of signaling storms on energy consumption and latency of LTE user equipment,'' in Proc. IEEE Int. Conf. High Perform. Comput. Commun., Aug. 2015, pp. 1248_1255. [139] G. Gorbil, O. H. Abdelrahman, M. Pavloski, and E. Gelenbe, ``Modeling and analysis of RRC-based signalling storms in 3G networks,'' IEEE Trans. Emerg. Topics Comput., vol. 4, no. 1, pp. 113_127, Jan. 2016. [140] U. Phuyal, A. T. Koc, M.-H. Fong, and R. Vannithamby, ``Controlling access overload and signaling congestion in M2M networks,'' in Proc. Signals, Syst. Comput., 2013, pp. 591_595. [141] R. Cheng, A. Deng, and F. Meng, ``Study of NB-IoT planning objectivesand planning roles,'' China Mobile Group Design Inst. Co., Tech. Rep. Telecommun. Sci. (S1), 2016. 81 [142] W. Zhong, R. Yu, S. Xie, Y. Zhang, and D. Tsang, ``Software de_ned networking for _exible and green energy Internet,'' IEEE Commun. Mag., vol. 54, no. 12, pp. 68_75, Dec. 2016. [143] K.Wang, Y. Shao, L. Shu, C. Zhu, and Y. Zhang, ``Mobile big data faulttolerant processing for ehealth networks,'' IEEE Netw., vol. 30, no. 1, pp. 36_42, Jan. 2016. [144] Y. Zhang, R. Yu, S. Xie, W. Yao, Y. Xiao, and M. Guizani, ``Home M2M networks: Architectures, standards, and QoS improvement,'' IEEE Commun. Mag., vol. 49, no. 4, pp. 44_52, Apr. 2011. [145] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, ``Multi-tier fog computing with large-scale IoT data analytics for smart cities,'' IEEE Internet Things J., to be published. [146] H. Lu, Y. Li, S. Mu, D.Wang, H. Kim, and S. Serikawa, ``Motor anomaly detection for unmanned aerial vehicles using reinforcement learning,'' IEEE Internet Things J., to be published. [147] M. Chen and K. Hwang, Cognitive Computing and Deep Learning for Intelligent Applications based on IoT/Cloud. Beijing, China:Machinery Ind. Press, 2017. [148] S. Zhixin and H. Hanshu, ``Security issues of NB-IoT,'' ZTE Technol., vol. 23, no. 1, pp. 47_50, 2017. [149] M. Chen, Introduction to Cognitive Computing. Wuhan, China: Huazhong Univ. Sci. Technol. Press, 2017. [150] K. Hwang and M. Chen, Big Data Analytics for Cloud/IoT and Cognitive Computing. London, U.K.: Wiley, 2017.

Collections

Endorsement

Review

Supplemented By

Referenced By