Investigation & Optimisation of Microfluidics channel using COMSOL

dc.contributor.authorAornob, Mubtasim Fuad
dc.contributor.authorIfty, Farhan Hassan
dc.contributor.authorAhmed, Jabir
dc.date.accessioned2025-06-19T05:33:23Z
dc.date.available2025-06-19T05:33:23Z
dc.date.issued2024-10-30
dc.descriptionSupervised by Prof. Dr. Mohammad Monjurul Ehsan, Department of Mechanical and Production Engineering(MPE), Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Mechanical and Production Engineering, 2024en_US
dc.description.abstractThe life of a patient with any kind of cancer depends on early cancer identification. According to a UK national census research, the average survival rate for people with stage 3 cancer and more fell from 80% to less than 30%. These patients included those with bowel, breast, lung, ovary, esophageal, and melanoma.[1].Modern diagnostic methods include, among other things, genome sequencing and fresh tissue biopsy, which are costly, need operating on the patient, and may take weeks to get findings. Since epithelial malignancies frequently transfer tumor cells into the circulation, the presence and quantity of Circulating Tumor Cells (CTCs) are important markers of the disease. Currently used techniques include physical filtration with commercial filters and density-based separation utilizing centrifugation. These methods do, however, have several significant drawbacks, including the requirement for costly equipment, lengthy processing periods, strict sample preparation to avoid contamination, and limited CTC recovery. A viable substitute is provided by microfluidics, which has faster outcomes, better separation, and less complicated apparatus. The reverse wavy channels from Zhou et al.'s work are used in our design. al [2] and by enclosing the whole channel in a circle, more turns may be included into the design in a comparatively small area, which might result in lower manufacturing costs, a smaller device footprint overall, and less pressure loss as compared to longer channels. The separation properties of CTCs from blood cells are examined in this study at Aspect Ratios in order to identify the ideal operating and separation parameters. It is shown that greatest separation occurs at an Aspect Ratio of 0.32. Additionally, four reverse wavy channel designs show substantial separation, suggesting that fewer channel patterns may be used to minimize the device's footprint even further.en_US
dc.identifier.citation[1] D. Crosby et al., “Early detection of cancer,” Science (1979), vol. 375, no. 6586, Mar. 2022, doi: 10.1126/science.aay9040. [2] Y. Zhou, Z. Ma, and Y. Ai, “Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures,” Microsyst Nanoeng, vol. 4, no. 1, 2018, doi: 10.1038/S41378-018-0005-6. [3] J. M. Martel and M. Toner, “Inertial focusing in microfluidics,” Annu Rev Biomed Eng, vol. 16, pp. 371–396, 2014, doi: 10.1146/annurev-bioeng-121813-120704. [4] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, “Continuous Particle Separation Through Deterministic Lateral Displacement,” Science (1979), vol. 304, no. 5673, pp. 987–990, May 2004, doi: 10.1126/science.1094567. [5] K. J. Morton et al., “Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials,” 2008. [Online]. Available: www.pnas.org/cgi/content/full/ [6] P. De Stefano, E. Bianchi, and G. Dubini, “The impact of microfluidics in high throughput drug-screening applications,” May 01, 2022, American Institute of Physics Inc. doi: 10.1063/5.0087294. [7] N. Xiang and Z. Ni, “Inertial Microfluidics for Single-Cell Manipulation and Analysis,” in Handbook of Single Cell Technologies, Singapore: Springer Singapore, 2020, pp. 1–30. doi: 10.1007/978-981-10-4857-9_29-1. [8] C. F. Rodríguez et al., “Low-cost inertial microfluidic device for microparticle separation: A laser-Ablated PMMA lab-on-a-chip approach without a cleanroom,” HardwareX, vol. 16, p. e00493, Dec. 2023, doi: 10.1016/j.ohx.2023.e00493. 45 [9] W. Tang, S. Zhu, D. Jiang, L. Zhu, J. Yang, and N. Xiang, “Channel innovations for inertial microfluidics,” Lab Chip, vol. 20, no. 19, pp. 3485–3502, Oct. 2020, doi: 10.1039/d0lc00714e. [10] J.-P. MATAS, J. F. MORRIS, and É. GUAZZELLI, “Inertial migration of rigid spherical particles in Poiseuille flow,” J Fluid Mech, vol. 515, pp. 171–195, Sep. 2004, doi: 10.1017/S0022112004000254. [11] J. A. Schonberg and E. J. Hinch, “Inertial migration of a sphere in Poiseuille flow,” J Fluid Mech, vol. 203, pp. 517–524, Jun. 1989, doi: 10.1017/S0022112089001564. [12] E. S. ASMOLOV, “The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number,” J Fluid Mech, vol. 381, pp. 63–87, Feb. 1999, doi: 10.1017/S0022112098003474. [13] B. P. Ho and L. G. Leal, “Inertial migration of rigid spheres in two-dimensional unidirectional flows,” J Fluid Mech, vol. 65, no. 2, pp. 365–400, Aug. 1974, doi: 10.1017/S0022112074001431. [14] R. G. Cox and H. Brenner, “The lateral migration of solid particles in Poiseuille flow — I theory,” Chem Eng Sci, vol. 23, no. 2, pp. 147–173, May 1968, doi: 10.1016/0009-2509(68)87059-9. [15] A. J. Chung, “A Minireview on Inertial Microfluidics Fundamentals: Inertial Particle Focusing and Secondary Flow,” Biochip J, vol. 13, no. 1, pp. 53–63, Mar. 2019, doi: 10.1007/s13206-019-3110-1. [16] Y. Gou, Y. Jia, P. Wang, and C. Sun, “Progress of Inertial Microfluidics in Principle and Application,” Sensors, vol. 18, no. 6, p. 1762, Jun. 2018, doi: 10.3390/s18061762. [17] G. SEGRÉ and A. SILBERBERG, “Radial Particle Displacements in Poiseuille Flow of Suspensions,” Nature, vol. 189, no. 4760, pp. 209–210, Jan. 1961, doi: 10.1038/189209a0. 46 [18] D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, “Particle Segregation and Dynamics in Confined Flows,” Phys Rev Lett, vol. 102, no. 9, p. 094503, Mar. 2009, doi: 10.1103/PhysRevLett.102.094503. [19] J.-P. MATAS, J. F. MORRIS, and É. GUAZZELLI, “Lateral force on a rigid sphere in large-inertia laminar pipe flow,” J Fluid Mech, vol. 621, pp. 59–67, Feb. 2009, doi: 10.1017/S0022112008004977. [20] Y. Gou, Y. Jia, P. Wang, and C. Sun, “Progress of inertial microfluidics in principle and application,” Jun. 01, 2018, MDPI AG. doi: 10.3390/s18061762. [21] D. Di Carlo, “Inertial microfluidics,” 2009, Royal Society of Chemistry. doi: 10.1039/b912547g. [22] Y. Zhou, Z. Ma, and Y. Ai, “Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures,” Microsyst Nanoeng, vol. 4, no. 1, 2018, doi: 10.1038/S41378-018-0005-6. [23] Y. Ying and Y. Lin, “Inertial Focusing and Separation of Particles in Similar Curved Channels,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-52983-z. [24] J. Zhu, T. J. Tzeng, and X. Xuan, “Continuous dielectrophoretic separation of particles in a spiral microchannel,” Electrophoresis, vol. 31, no. 8, pp. 1382–1388, Apr. 2010, doi: 10.1002/elps.200900736. [25] J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous Dielectrophoretic Size-Based Particle Sorting,” Anal Chem, vol. 78, no. 14, pp. 5019–5025, Jul. 2006, doi: 10.1021/ac0601314. [26] J. Voldman, “ELECTRICAL FORCES FOR MICROSCALE CELL MANIPULATION,” Annu Rev Biomed Eng, vol. 8, no. 1, pp. 425–454, Aug. 2006,doi: 10.1146/annurev.bioeng.8.061505.095739. [27] D. R. Gossett et al., “Label-free cell separation and sorting in microfluidic systems,”Anal Bioanal Chem, vol. 397, no. 8, pp. 3249–3267, Aug. 2010, doi:10.1007/s00216-010-3721-9. 47 [28] N. Pamme, “Continuous flow separations in microfluidic devices,” Lab Chip, vol. 7,no. 12, p. 1644, 2007, doi: 10.1039/b712784g. [29] K. Loutherback, K. S. Chou, J. Newman, J. Puchalla, R. H. Austin, and J. C. Sturm,“Improved performance of deterministic lateral displacement arrays with triangularposts,” Microfluid Nanofluidics, vol. 9, no. 6, pp. 1143–1149, Dec. 2010, doi:10.1007/s10404-010-0635-y. [30] J. M. Martel and M. Toner, “Inertial focusing in microfluidics,” 2014, Annual Reviews Inc. doi: 10.1146/annurev-bioeng-121813-120704. [31] H. Amini, W. Lee, and D. Di Carlo, “Inertial microfluidic physics,” Aug. 07, 2014,Royal Society of Chemistry. doi: 10.1039/c4lc00128a. [32] N. Nivedita and I. Papautsky, “Continuous separation of blood cells in spiral microfluidic devices,” Biomicrofluidics, vol.7, no.5, Sep. 2013, doi:10.1063/1.4819275. [33] L. Wu, G. Guan, H. W. Hou, A. Asgar. S. Bhagat, and J. Han, “Separation of Leukocytes from Blood Using Spiral Channel with Trapezoid Cross-Section,” Anal Chem, vol. 84, no. 21, pp. 9324–9331, Nov. 2012, doi: 10.1021/ac302085y. [34] S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, “Inertial microfluidics for continuous particle separation in spiral microchannels,” Lab Chip,vol. 9, no. 20, p. 2973, 2009, doi: 10.1039/b908271a. [35] A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, “Enhanced particlefiltration in straight microchannels using shear-modulated inertial migration,”Physics of Fluids, vol. 20, no. 10, Oct. 2008, doi: 10.1063/1.2998844. [36] B. Chun and A. J. C. Ladd, “Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions,” Physics of Fluids,vol. 18, no. 3, Mar. 2006, doi: 10.1063/1.2176587. 48 [37] D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing,ordering, and separation of particles in microchannels,” Proceedings of the NationalAcademy of Sciences, vol. 104, no. 48, pp. 18892–18897, Nov. 2007, doi:10.1073/pnas.0704958104. [38] D. R. Gossett and D. Di Carlo, “Particle Focusing Mechanisms in Curving Confined Flows,” Anal Chem, vol. 81, no. 20, pp. 8459–8465, Oct. 2009, doi:10.1021/ac901306y. [39] D. Di Carlo, J. F. Edd, D. Irimia, R. G. Tompkins, and M. Toner, “Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing,” Anal Chem, vol. 80, no. 6, pp. 2204–2211, Mar. 2008, doi: 10.1021/ac702283m. [40] X. Mao, I. Bischofberger, and A. E. Hosoi, “Particle focusing in a wavy channel,” J Fluid Mech, vol. 968, Aug. 2023, doi: 10.1017/jfm.2023.558. [41] J.-P. MATAS, J. F. MORRIS, and É. GUAZZELLI, “Inertial migration of rigid spherical particles in Poiseuille flow,” J Fluid Mech, vol. 515, pp. 171–195, Sep.2004, doi: 10.1017/S0022112004000254. [42] D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing,ordering, and separation of particles in microchannels,” Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18892–18897, Nov. 2007, doi:10.1073/pnas.0704958104. [43] J. Zhou and I. Papautsky, “Fundamentals of inertial focusing in microchannels,” Lab Chip, vol. 13, no. 6, pp. 1121–1132, Mar. 2013, doi: 10.1039/c2lc41248a.D. Jiang, C. Ni, W. Tang, D. Huang, and N. Xiang, “Inertial microfluidics in contraction expansion microchannels: A review,” Jul. 01, 2021, American Institute of Physics Inc. doi: 10.1063/5.0058732. 49 [44] T. S. Sim, K. Kwon, J. C. Park, J.-G. Lee, and H.-I. Jung, “Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels,” Lab Chip, vol. 11,no. 1, pp. 93–99, 2011, doi:10.1039/C0LC00109K. [45] A. Al-Ali, W. Waheed, E. Abu-Nada, and A. Alazzam, “A review of active andpassive hybrid systems based on Dielectrophoresis for the manipulation of microparticles,” J Chromatogr A, vol. 1676, p. 463268, Aug. 2022, doi:10.1016/j.chroma.2022.463268. [46] S. Yan, J. Zhang, D. Yuan, and W. Li, “Hybrid microfluidics combined with active and passive approaches for continuous cell separation,” Electrophoresis, vol. 38, no.2, pp. 238–249, Jan. 2017, doi: 10.1002/elps.201600386. [47] M. S. Islam and X. Chen, “Continuous CTC separation through a DEP-based contraction–expansion inertial microfluidic channel,” Biotechnol Prog, vol. 39, no.4, Jul. 2023, doi: 10.1002/btpr.3341. [48] Hur, S. C., Choi, S.-E., Kwon, S., & Carlo, D. D. (2011). Inertial focusing of non spherical microparticles. Applied Physics Letters, 99(4), 044101. doi:10.1063/1.3608115 [49] Gossett, D. R., Weaver, W. M., Mach, A. J., Hur, S. C., Tse, H. T. K., Lee, W., Di Carlo, D. (2010). Label-free cell separation and sorting in microfluidic systems. Analytical and Bioanalytical Chemistry, 397(8), 3249–3267. doi:10.1007/s00216- 010-3721- [50] Gossett, D. R., & Carlo, D. D. (2009). Particle Focusing Mechanisms in Curving Confined Flows. Analytical Chemistry, 81(20), 8459–8465. doi:10.1021/ac901306y [51] Di Carlo, D., Edd, J. F., Humphry, K. J., Stone, H. A., & Toner, M. (2009). Particle Segregation and Dynamics in Confined Flows. Physical Review Letters, 102(9). doi:10.1103/physrevlett.102.0945 50 [52] Hur, S. C., Choi, S.-E., Kwon, S., & Carlo, D. D. (2011). Inertial focusing of non spherical microparticles. Applied Physics Letters, 99(4), 044101. doi:10.1063/1.3608115 [53] Di Carlo, D., Irimia, D., Tompkins, R. G., & Toner, M. (2007). Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences, 104(48), 18892–18897en_US
dc.identifier.urihttp://hdl.handle.net/123456789/2431
dc.language.isoenen_US
dc.publisherDepartment of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladeshen_US
dc.subjectDielectrophorosis, COMSOL, Microfluidics, Microchannel, Spiralen_US
dc.titleInvestigation & Optimisation of Microfluidics channel using COMSOLen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Fulltext_ MPE_190012110_190012130_190012135_Book - Jabir Ahmed 190012135.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Signature Page_ MPE_Declaration_of_candidates - Jabir Ahmed 190012135.jpg
Size:
2.93 MB
Format:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Description:
Loading...
Thumbnail Image
Name:
Turnitin Report_ 190012110_190012130_190012135_PlagiarismReport - Jabir Ahmed 190012135.pdf
Size:
107.15 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections