Comparative Thermal Conductivity of Transition Metal Dichalcogenide (TMD) MX2 (M=MO, W; X=S, TE) Bilayers:Amolecular Dynamic Study

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh

Abstract

Hetero bilayers composed of two-dimensional transition metal dichalcogenides demonstrate remarkable performance in nanoscale electronic devices through the vertical stacking of individual layers. Nanotechnology has been primarily advanced by the emergence of two dimensional materials. Therefore, it is crucial for materials researchers to offer accurate descriptions of these materials specific to their intended applications. This material may be examined using two standard methodologies. Classical Mechanics and Density Functional Theory (DFT) served as two examples of theoretical models. This study aims to evaluate thermal conductivity using Molecular Dynamics (MD) simulation. The simulation utilizes the LAMMPS program. Interatomic potentials, such as the Lennard-Jones and Stillinger-Weber potentials, are employed to obtain intermediate results. This study investigates the in-plane thermal conductivities of MoTe2–MoTe2, MoTe2–WS2, and WTe2–WTe2 hetero bilayers through nonequilibrium molecular dynamics simulations. This study explicitly examines the impacts of system size and temperature-dependent interactions. The analysis indicates that as temperature increases from 100 to 500 K, thermal conductivity decreases in proportion to the rise in thermal radiation. Moreover, a reduction in system length results in decreased heat conductivity and radiation across all temperature ranges. Adjusting the system's breadth, provided that its heat conductivity remains largely unchanged within acceptable limits. The MoTe2-MoTe2 homo bilayer exhibited reduced thermal conductivity at elevated temperatures due to enhanced phonon-phonon scattering. A more significant reduction in the MoTe₂-WS₂ hetero bilayer was noted, attributed in part to phonon mismatch and interface scattering. The reduction becomes increasingly subtle with rising temperatures. The low thermal conductivity in the WTe₂-WTe₂ pairing is due to its composition of heavier atomic elements and specific interlayer bonds, which result in increased phonon anharmonicity and scattering. At high temperatures, heat transport was influenced by system dynamics and phonon spectra. This research elucidates the influence of temperature, system dynamics, and structural properties on the modulation of thermal conductivity in transition metal dichalcogenide hetero bilayers. Therefore, it provides suggestions for altering their exceptional thermal properties relevant to thermoelectric and nanoelectronics applications.

Description

Supervised by Prof. Dr. Md. Rezwanul Karim, Department of Production and Mechanical Engineering(MPE), Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Mechanical and Production Engineering, 2024

Keywords

Hetero-bilayer, thermal conductivity, TMD

Citation

[1] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chem, vol. 5, no. 4, pp. 263–275, Apr. 2013, doi: 10.1038/nchem.1589. [2] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat Rev Mater, vol. 2, no. 8, p. 17033, Jun. 2017, doi: 10.1038/natrevmats.2017.33. [3] K. S. Novoselov et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666–669, Oct. 2004, doi: 10.1126/science.1102896. [4] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature, vol. 499, no. 7459, pp. 419–425, Jul. 2013, doi: 10.1038/nature12385. [5] Saito, R., Dresselhaus, G., & Dresselhaus, M. S, Physical properties of carbon nanotubes. [6] J. H. Seol et al., “Two-Dimensional Phonon Transport in Supported Graphene,” Science, vol. 328, no. 5975, pp. 213–216, Apr. 2010, doi: 10.1126/science.1184014. [7] L. Lindsay and D. A. Broido, “Three-phonon phase space and lattice thermal conductivity in semiconductors,” J. Phys.: Condens. Matter, vol. 20, no. 16, p. 165209, Apr. 2008, doi: 10.1088/0953-8984/20/16/165209. [8] B. Qiu and X. Ruan, “Reduction of spectral phonon relaxation times from suspended to supported graphene,” Applied Physics Letters, vol. 100, no. 19, p. 193101, May 2012, doi: 10.1063/1.4712041. [9] X. Gu and R. Yang, “PHONON TRANSPORT AND THERMAL CONDUCTIVITY IN TWO-DIMENSIONAL MATERIALS,” Annual Rev Heat Transfer, vol. 19, no. 1, pp. 1– 65, 2016, doi: 10.1615/AnnualRevHeatTransfer.2016015491. [10] Y. Cai, J. Lan, G. Zhang, and Y.-W. Zhang, “Lattice vibrational modes and phonon thermal conductivity of monolayer MoS 2,” Phys. Rev. B, vol. 89, no. 3, p. 035438, Jan. 2014, doi: 10.1103/PhysRevB.89.035438. [11] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1–19, Mar. 1995, doi: 10.1006/jcph.1995.1039. ������� “2,WTe2/MoS م. اسرافیلیان, ”بررسی خواص ترموالکتریکی ساختارھای نانو نوار [12] ������������� ����, vol. 6, no. 3, Apr. 2024, doi: 10.30473/jphys.2024.69797.1174. 95 [13] M. Zulfiqar, Y. Zhao, G. Li, Z. Li, and J. Ni, “Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te),” Sci Rep, vol. 9, no. 1, p. 4571, Mar. 2019, doi: 10.1038/s41598-019-40882-2. [14] G. A. Slack, “Nonmetallic crystals with high thermal conductivity,” Journal of Physics and Chemistry of Solids, vol. 34, no. 2, pp. 321–335, Jan. 1973, doi: 10.1016/0022- 3697(73)90092-9. [15] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Journal of Applied Physics, vol. 89, no. 11, pp. 5815–5875, Jun. 2001, doi: 10.1063/1.1368156. [16] X. Song, F. Yuan, and L. M. Schoop, “The properties and prospects of chemically exfoliated nanosheets for quantum materials in two dimensions,” Applied Physics Reviews, vol. 8, no. 1, p. 011312, Mar. 2021, doi: 10.1063/5.0038644. [17] Numerical Simulation in Molecular Dynamics, vol. 5. in Texts in Computational Science and Engineering, vol. 5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-68095-6. [18] M. Zhang, G. H. Tang, Y. F. Li, B. Fu, and X. Y. Wang, “Phonon Thermal Properties of Heterobilayers with a Molecular Dynamics Study,” Int J Thermophys, vol. 41, no. 5, p. 57, May 2020, doi: 10.1007/s10765-020-02627-6. [19] Y. Hong, J. Zhang, and X. C. Zeng, “Thermal Conductivity of Monolayer MoSe 2 and MoS 2,” J. Phys. Chem. C, vol. 120, no. 45, pp. 26067–26075, Nov. 2016, doi: 10.1021/acs.jpcc.6b07262. [20] D. O. Lindroth and P. Erhart, “Thermal transport in van der Waals solids from first principles calculations,” Phys. Rev. B, vol. 94, no. 11, p. 115205, Sep. 2016, doi: 10.1103/PhysRevB.94.115205. [21] B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS 2 , MoSe 2 , and WS 2 : interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv., vol. 6, no. 7, pp. 5767–5773, 2016, doi: 10.1039/C5RA19747C. [22] R. Yan et al., “Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy,” ACS Nano, vol. 8, no. 1, pp. 986– 993, Jan. 2014, doi: 10.1021/nn405826k. [23] N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong, and T. Yu, “Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy,” Nano Res., vol. 8, no. 4, pp. 1210–1221, Apr. 2015, doi: 10.1007/s12274-014-0602-0. 96 [24] P. Jiang, X. Qian, X. Gu, and R. Yang, “Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX 2 (M = Mo, W and X = S, Se) using Time‐Domain Thermoreflectance,” Advanced Materials, vol. 29, no. 36, p. 1701068, Sep. 2017, doi: 10.1002/adma.201701068. [25] B. Amin, T. P. Kaloni, G. Schreckenbach, and M. S. Freund, “Materials properties of out-of-plane heterostructures of MoS2-WSe2 and WS2-MoSe2,” Applied Physics Letters, vol. 108, no. 6, p. 063105, Feb. 2016, doi: 10.1063/1.4941755. [26] Z. Ma et al., “Tunable Band Structures of Heterostructured Bilayers with Transition Metal Dichalcogenide and MXene Monolayer,” J. Phys. Chem. C, vol. 118, no. 10, pp. 5593–5599, Mar. 2014, doi: 10.1021/jp500861n. [27] A. Mobaraki, A. Kandemir, H. Yapicioglu, O. Gülseren, and C. Sevik, “Validation of inter-atomic potential for WS2 and WSe2 crystals through assessment of thermal transport properties,” Computational Materials Science, vol. 144, pp. 92–98, Mar. 2018, doi: 10.1016/j.commatsci.2017.12.005. [28] X. Gu and R. Yang, “Phonon transport in single-layer transition metal dichalcogenides: A first-principles study,” Applied Physics Letters, vol. 105, no. 13, p. 131903, Sep. 2014, doi: 10.1063/1.4896685. [29] J. Zhang et al., “Phonon Thermal Properties of Transition-Metal Dichalcogenides MoS 2 and MoSe 2 Heterostructure,” J. Phys. Chem. C, vol. 121, no. 19, pp. 10336–10344, May 2017, doi: 10.1021/acs.jpcc.7b02547. [30] J. Zhang et al., “Phonon Thermal Properties of Transition-Metal Dichalcogenides MoS2 and MoSe2 Heterostructure,” J. Phys. Chem. C, vol. 121, no. 19, pp. 10336–10344, May 2017, doi: 10.1021/acs.jpcc.7b02547. [31] R. Yan et al., “Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy,” ACS Nano, vol. 8, no. 1, pp. 986– 993, Jan. 2014, doi: 10.1021/nn405826k. [32] A. N. Gandi and U. Schwingenschlögl, “Thermal conductivity of bulk and monolayer MoS 2,” EPL, vol. 113, no. 3, p. 36002, Feb. 2016, doi: 10.1209/0295-5075/113/36002. [33] Y. Hong, J. Zhang, and X. C. Zeng, “Thermal Conductivity of Monolayer MoSe 2 and MoS 2,” J. Phys. Chem. C, vol. 120, no. 45, pp. 26067–26075, Nov. 2016, doi: 10.1021/acs.jpcc.6b07262. 97 [34] B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS 2 , MoSe 2 , and WS 2 : interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv., vol. 6, no. 7, pp. 5767–5773, 2016, doi: 10.1039/C5RA19747C. [35] I. Jo, M. T. Pettes, E. Ou, W. Wu, and L. Shi, “Basal-plane thermal conductivity of few layer molybdenum disulfide,” Appl. Phys. Lett., vol. 104, no. 20, p. 201902, May 2014, doi: 10.1063/1.4876965. [36] S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J.-F. Guinel, and R. S. Katiyar, “Temperature Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS 2,” J. Phys. Chem. C, vol. 117, no. 17, pp. 9042–9047, May 2013, doi: 10.1021/jp402509w. [37] R. Yan et al., “Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy,” ACS Nano, vol. 8, no. 1, pp. 986– 993, Jan. 2014, doi: 10.1021/nn405826k. [38] N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong, and T. Yu, “Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy,” Nano Res., vol. 8, no. 4, pp. 1210–1221, Apr. 2015, doi: 10.1007/s12274-014-0602-0. [39] B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2 , MoSe2 , and WS2 : interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv., vol. 6, no. 7, pp. 5767–5773, 2016, doi: 10.1039/C5RA19747C. [40] I. F. De Vries, H. Osthues, and N. L. Doltsinis, “Thermal conductivity across transition metal dichalcogenide bilayers,” iScience, vol. 26, no. 4, p. 106447, Apr. 2023, doi: 10.1016/j.isci.2023.106447. [41] J. Zhang et al., “Phonon Thermal Properties of Transition-Metal Dichalcogenides MoS 2 and MoSe 2 Heterostructure,” J. Phys. Chem. C, vol. 121, no. 19, pp. 10336–10344, May 2017, doi: 10.1021/acs.jpcc.7b02547. [42] M. Zhang, G. H. Tang, Y. F. Li, B. Fu, and X. Y. Wang, “Phonon Thermal Properties of Heterobilayers with a Molecular Dynamics Study,” Int J Thermophys, vol. 41, no. 5, p. 57, May 2020, doi: 10.1007/s10765-020-02627-6. [43] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations,” J. Am. Chem. Soc., vol. 114, no. 25, pp. 10024–10035, Dec. 1992, doi: 10.1021/ja00051a040. [44] J.-W. Jiang and H. S. Park, “A Gaussian treatment for the friction issue of Lennard Jones potential in layered materials: Application to friction between graphene, MoS2, and 98 black phosphorus,” Journal of Applied Physics, vol. 117, no. 12, p. 124304, Mar. 2015, doi: 10.1063/1.4916538. [45] T. Liang, S. R. Phillpot, and S. B. Sinnott, “Parametrization of a reactive many-body potential for Mo–S systems,” Phys. Rev. B, vol. 79, no. 24, p. 245110, Jun. 2009, doi: 10.1103/PhysRevB.79.245110. [46] C. Chiritescu et al., “Ultralow Thermal Conductivity in Disordered, Layered WSe 2 Crystals,” Science, vol. 315, no. 5810, pp. 351–353, Jan. 2007, doi: 10.1126/science.1136494. [47] P. Norouzzadeh and D. J. Singh, “Thermal conductivity of single-layer WSe 2 by a Stillinger–Weber potential,” Nanotechnology, vol. 28, no. 7, p. 075708, Feb. 2017, doi: 10.1088/1361-6528/aa55e1. [48] M. Shen and P. Keblinski, “Ballistic vs. diffusive heat transfer across nanoscopic films of layered crystals,” Journal of Applied Physics, vol. 115, no. 14, p. 144310, Apr. 2014, doi: 10.1063/1.4870940. [49] A. J. Gabourie, S. V. Suryavanshi, A. B. Farimani, and E. Pop, “Reduced thermal conductivity of supported and encased monolayer and bilayer MoS 2,” 2D Mater., vol. 8, no. 1, p. 011001, Jan. 2021, doi: 10.1088/2053-1583/aba4ed. [50] X. Gu, B. Li, and R. Yang, “Layer thickness-dependent phonon properties and thermal conductivity of MoS2,” Journal of Applied Physics, vol. 119, no. 8, p. 085106, Feb. 2016, doi: 10.1063/1.4942827. [51] K. Xu et al., “Thermal transport in MoS 2 from molecular dynamics using different empirical potentials,” Phys. Rev. B, vol. 99, no. 5, p. 054303, Feb. 2019, doi: 10.1103/PhysRevB.99.054303. [52] S. Fiore and M. Luisier, “Ab initio modeling of thermal transport through van der Waals materials,” Phys. Rev. Materials, vol. 4, no. 9, p. 094005, Sep. 2020, doi: 10.1103/PhysRevMaterials.4.094005. [53] R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, and F. Zamora, “2D materials: to graphene and beyond,” Nanoscale, vol. 3, no. 1, pp. 20–30, 2011, doi: 10.1039/C0NR00323A. [54] K. S. Novoselov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, Nov. 2005, doi: 10.1038/nature04233. [55] P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev., vol. 71, no. 9, pp. 622–634, May 1947, doi: 10.1103/PhysRev.71.622. 99 [56] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotech, vol. 7, no. 11, pp. 699–712, Nov. 2012, doi: 10.1038/nnano.2012.193. [57] K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 490, no. 7419, pp. 192–200, Oct. 2012, doi: 10.1038/nature11458. [58] R. Zhang and R. Cheung, “Mechanical Properties and Applications of Two Dimensional Materials,” in Two-dimensional Materials - Synthesis, Characterization and Potential Applications, P. K. Nayak, Ed., InTech, 2016. doi: 10.5772/64017. [59] D. Er and K. Ghatak, “Atomistic modeling by density functional theory of two dimensional materials,” in Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures, Elsevier, 2020, pp. 113–123. doi: 10.1016/B978-0-12-818475- 2.00006-4. [60] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature, vol. 499, no. 7459, pp. 419–425, Jul. 2013, doi: 10.1038/nature12385. [61] S. Deng and V. Berry, “Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications,” Materials Today, vol. 19, no. 4, pp. 197–212, May 2016, doi: 10.1016/j.mattod.2015.10.002. [62] Y. Song, R. Tian, J. Yang, R. Yin, J. Zhao, and X. Gan, “Second Harmonic Generation in Atomically Thin MoTe2,” Advanced Optical Materials, vol. 6, no. 17, p. 1701334, Sep. 2018, doi: 10.1002/adom.201701334. [63] N. Mounet et al., “Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds,” Nature Nanotech, vol. 13, no. 3, pp. 246–252, Mar. 2018, doi: 10.1038/s41565-017-0035-5. [64] P. Joensen, R. F. Frindt, and S. R. Morrison, “Single-layer MoS2,” Materials Research Bulletin, vol. 21, no. 4, pp. 457–461, Apr. 1986, doi: 10.1016/0025-5408(86)90011-5. [65] R. Kappera et al., “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nature Mater, vol. 13, no. 12, pp. 1128–1134, Dec. 2014, doi: 10.1038/nmat4080. [66] Y.-C. Lin, D. O. Dumcenco, Y.-S. Huang, and K. Suenaga, “Atomic mechanism of phase transition between metallic and semiconducting MoS2 single-layers,” 2013, arXiv. doi: 10.48550/ARXIV.1310.2363. 100 [67] K.-A. N. Duerloo, Y. Li, and E. J. Reed, “Structural phase transitions in two dimensional Mo- and W-dichalcogenide monolayers,” Nat Commun, vol. 5, no. 1, p. 4214, Jul. 2014, doi: 10.1038/ncomms5214. [68] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chem, vol. 5, no. 4, pp. 263–275, Apr. 2013, doi: 10.1038/nchem.1589. [69] “Quantum simulation of electron transport in disordered two-dimensional transition metal dichalcogenides”. [70] “On the theory of superconductivity: the one-dimensional case,” Proc. R. Soc. Lond. A, vol. 223, no. 1154, pp. 296–305, May 1954, doi: 10.1098/rspa.1954.0116. [71] K. Kang, S. Chen, and E.-H. Yang, “Synthesis of transition metal dichalcogenides,” in Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures, Elsevier, 2020, pp. 247–264. doi: 10.1016/B978-0-12-818475-2.00012-X. [72] T.-R. T. Han et al., “Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography,” Sci. Adv., vol. 1, no. 5, p. e1400173, Jun. 2015, doi: 10.1126/sciadv.1400173. [73] W. Shi et al., “Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating,” Sci Rep, vol. 5, no. 1, p. 12534, Aug. 2015, doi: 10.1038/srep12534. [74] A. Falin et al., “Mechanical Properties of Atomically Thin Tungsten Dichalcogenides: WS2 , WSe2 , and WTe2,” ACS Nano, vol. 15, no. 2, pp. 2600–2610, Feb. 2021, doi: 10.1021/acsnano.0c07430. [75] E. Yang, H. Ji, and Y. Jung, “Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes,” J. Phys. Chem. C, vol. 119, no. 47, pp. 26374–26380, Nov. 2015, doi: 10.1021/acs.jpcc.5b09935. [76] P. Gao, L. Wang, Y. Zhang, Y. Huang, and K. Liu, “Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS 2,” ACS Nano, vol. 9, no. 11, pp. 11296–11301, Nov. 2015, doi: 10.1021/acsnano.5b04950. [77] D. Su, S. Dou, and G. Wang, “Ultrathin MoS 2 Nanosheets as Anode Materials for Sodium‐Ion Batteries with Superior Performance,” Advanced Energy Materials, vol. 5, no. 6, p. 1401205, Mar. 2015, doi: 10.1002/aenm.201401205. [78] X. Sun, Z. Wang, and Y. Q. Fu, “Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide,” Sci Rep, vol. 5, no. 1, p. 18712, Dec. 2015, doi: 10.1038/srep18712. 101 [79] V. Sharma, K. Ghatak, and D. Datta, “Two-dimensional materials and its heterostructures for energy storage,” in Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures, Elsevier, 2020, pp. 385–401. doi: 10.1016/B978-0- 12-818475-2.00017-9. [80] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature Nanotech, vol. 6, no. 3, pp. 147–150, Mar. 2011, doi: 10.1038/nnano.2010.279. [81] A. A. Soluyanov et al., “Type-II Weyl semimetals,” Nature, vol. 527, no. 7579, pp. 495– 498, Nov. 2015, doi: 10.1038/nature15768. [82] B. A. Joyce, “Molecular beam epitaxy,” Rep. Prog. Phys., vol. 48, no. 12, pp. 1637– 1697, Dec. 1985, doi: 10.1088/0034-4885/48/12/002. [83] J.-W. Chung, Z. R. Dai, and F. S. Ohuchi, “WS2 thin films by metal organic chemical vapor deposition,” Journal of Crystal Growth, vol. 186, no. 1–2, pp. 137–150, Mar. 1998, doi: 10.1016/S0022-0248(97)00479-X. [84] J. Wang, Z. Li, H. Chen, G. Deng, and X. Niu, “Recent Advances in 2D Lateral Heterostructures,” Nano-Micro Lett., vol. 11, no. 1, p. 48, Dec. 2019, doi: 10.1007/s40820- 019-0276-y. [85] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat Rev Mater, vol. 2, no. 8, p. 17033, Jun. 2017, doi: 10.1038/natrevmats.2017.33. [86] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2,” Phys. Rev. B, vol. 83, no. 24, p. 245213, Jun. 2011, doi: 10.1103/PhysRevB.83.245213. [87] W. Kohn, “Nobel Lecture: Electronic structure of matter—wave functions and density functionals,” Rev. Mod. Phys., vol. 71, no. 5, pp. 1253–1266, Oct. 1999, doi: 10.1103/RevModPhys.71.1253. [88] P. Johari and V. B. Shenoy, “Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains,” ACS Nano, vol. 6, no. 6, pp. 5449–5456, Jun. 2012, doi: 10.1021/nn301320r. [89] K. He et al., “Tightly Bound Excitons in Monolayer WSe 2,” Phys. Rev. Lett., vol. 113, no. 2, p. 026803, Jul. 2014, doi: 10.1103/PhysRevLett.113.026803. 102 [90] J. S. Ross et al., “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat Commun, vol. 4, no. 1, p. 1474, Feb. 2013, doi: 10.1038/ncomms2498. [91] D. Sanvitto et al., “Observation of Charge Transport by Negatively Charged Excitons,” Science, vol. 294, no. 5543, pp. 837–839, Oct. 2001, doi: 10.1126/science.1064847. [92] M. M. Fogler, L. V. Butov, and K. S. Novoselov, “High-temperature superfluidity with indirect excitons in van der Waals heterostructures,” Nat Commun, vol. 5, no. 1, p. 4555, Jul. 2014, doi: 10.1038/ncomms5555. [93] G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, and H. Terrones, “Electronic and optical properties of strained graphene and other strained 2D materials: a review,” Rep. Prog. Phys., vol. 80, no. 9, p. 096501, Sep. 2017, doi: 10.1088/1361-6633/aa74ef. [94] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nature Nanotech, vol. 7, no. 8, pp. 490–493, Aug. 2012, doi: 10.1038/nnano.2012.95. [95] K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nature Nanotech, vol. 7, no. 8, pp. 494–498, Aug. 2012, doi: 10.1038/nnano.2012.96. [96] J. A. Reyes-Retana, G. G. Naumis, and F. Cervantes-Sodi, “Centered Honeycomb NiSe 2 Nanoribbons: Structure and Electronic Properties,” J. Phys. Chem. C, vol. 118, no. 6, pp. 3295–3304, Feb. 2014, doi: 10.1021/jp409504f. [97] X. Zhang, M. Zhen, J. Bai, S. Jin, and L. Liu, “Efficient NiSe-Ni 3 Se 2 /Graphene Electrocatalyst in Dye-Sensitized Solar Cells: The Role of Hollow Hybrid Nanostructure,” ACS Appl. Mater. Interfaces, vol. 8, no. 27, pp. 17187–17193, Jul. 2016, doi: 10.1021/acsami.6b02350. [98] F. Wang et al., “Selenium‐Enriched Nickel Selenide Nanosheets as a Robust Electrocatalyst for Hydrogen Generation,” Angew Chem Int Ed, vol. 55, no. 24, pp. 6919– 6924, Jun. 2016, doi: 10.1002/anie.201602802. [99] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat Rev Mater, vol. 2, no. 8, p. 17033, Jun. 2017, doi: 10.1038/natrevmats.2017.33. [100] M. N. Ali et al., “Large, non-saturating magnetoresistance in WTe2,” Nature, vol. 514, no. 7521, pp. 205–208, Oct. 2014, doi: 10.1038/nature13763. 103 [101] I. Pletikosić, M. N. Ali, A. V. Fedorov, R. J. Cava, and T. Valla, “Electronic Structure Basis for the Extraordinary Magnetoresistance in WTe 2,” Phys. Rev. Lett., vol. 113, no. 21, p. 216601, Nov. 2014, doi: 10.1103/PhysRevLett.113.216601. [102] L. R. Thoutam et al., “Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe 2,” Phys. Rev. Lett., vol. 115, no. 4, p. 046602, Jul. 2015, doi: 10.1103/PhysRevLett.115.046602. [103] A. A. Soluyanov et al., “Type-II Weyl semimetals,” Nature, vol. 527, no. 7579, pp. 495– 498, Nov. 2015, doi: 10.1038/nature15768. [104] E. J. Sie et al., “An ultrafast symmetry switch in a Weyl semimetal,” Nature, vol. 565, no. 7737, pp. 61–66, Jan. 2019, doi: 10.1038/s41586-018-0809-4. [105] Z. Fei et al., “Edge conduction in monolayer WTe2,” Nature Phys, vol. 13, no. 7, pp. 677–682, Jul. 2017, doi: 10.1038/nphys4091. [106] S. Wu et al., “Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal,” Science, vol. 359, no. 6371, pp. 76–79, Jan. 2018, doi: 10.1126/science.aan6003. [107] S. Tang et al., “Quantum spin Hall state in monolayer 1T’-WTe2,” Nature Phys, vol. 13, no. 7, pp. 683–687, Jul. 2017, doi: 10.1038/nphys4174. [108] I. Cucchi et al., “Microfocus Laser–Angle-Resolved Photoemission on Encapsulated Mono-, Bi-, and Few-Layer 1T′-WTe 2,” Nano Lett., vol. 19, no. 1, pp. 554–560, Jan. 2019, doi: 10.1021/acs.nanolett.8b04534. [109] Y. Shi et al., “Imaging quantum spin Hall edges in monolayer WTe 2,” Sci. Adv., vol. 5, no. 2, p. eaat8799, Feb. 2019, doi: 10.1126/sciadv.aat8799. [110] Q. Yang, M. Wu, and J. Li, “Origin of Two-Dimensional Vertical Ferroelectricity in WTe 2 Bilayer and Multilayer,” J. Phys. Chem. Lett., vol. 9, no. 24, pp. 7160–7164, Dec. 2018, doi: 10.1021/acs.jpclett.8b03654. [111] Handbook of Chemistry and Physics. [112] M. Dey, M. Dey, M. A. Matin, and N. Amin, “Design of highly stable and efficient molybdenum telluride PV cells with arsenic telluride BSF,” in 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh: IEEE, Sep. 2016, pp. 1–5. doi: 10.1109/CEEICT.2016.7873153. 104 [113] K. Balakrishnan and P. Ramasamy, “Study of anomalous electrical behaviour of molybdenum ditelluride single crystals,” Journal of Crystal Growth, vol. 137, no. 1–2, pp. 309–311, Mar. 1994, doi: 10.1016/0022-0248(94)91291-2. [114] R. F. Frindt, “The optical properties of single crystals of WSe2 and MoTe2,” Journal of Physics and Chemistry of Solids, vol. 24, no. 9, pp. 1107–1108, Sep. 1963, doi: 10.1016/0022-3697(63)90024-6. [115] D. Puotinen and R. E. Newnham, “The crystal structure of MoTe 2,” Acta Cryst, vol. 14, no. 6, pp. 691–692, Jun. 1961, doi: 10.1107/S0365110X61002084. [116] B. E. Brown, “The crystal structures of WTe 2 and high-temperature MoTe 2,” Acta Cryst, vol. 20, no. 2, pp. 268–274, Feb. 1966, doi: 10.1107/S0365110X66000513. [117] M. K. Agarwal and M. J. Capers, “The measurement of the lattice parameters of molybdenum ditelluride,” J Appl Crystallogr, vol. 5, no. 2, pp. 63–66, Apr. 1972, doi: 10.1107/S0021889872008787. [118] O. Knop and R. D. MacDonald, “CHALKOGENIDES OF THE TRANSITION ELEMENTS: III. MOLYBDENUM DITELLURIDE,” Can. J. Chem., vol. 39, no. 4, pp. 897–904, Apr. 1961, doi: 10.1139/v61-110. [119] M. K. Agarwal and M. J. Capers, “Dislocations in molybdenum ditelluride,” J Appl Crystallogr, vol. 9, no. 5, pp. 407–410, Oct. 1976, doi: 10.1107/S0021889876011710. [120] E. Revolinsky and D. J. Beerntsen, “Electrical properties of α- and β-MoTe2 as affected by stoichiometry and preparation temperature,” Journal of Physics and Chemistry of Solids, vol. 27, no. 3, pp. 523–526, Mar. 1966, doi: 10.1016/0022-3697(66)90195-8. [121] M. B. Vellinga, R. De Jonge, and C. Haas, “Semiconductor to metal transition in MoTe2,” Journal of Solid State Chemistry, vol. 2, no. 2, pp. 299–302, Aug. 1970, doi: 10.1016/0022-4596(70)90085-X. [122] C. Manolikas, J. Van Landuyt, and S. Amelinckx, “Electron microscopy and electron diffraction study of the domain structures, the dislocation fine structure, and the phase transformations in β-MoTe2,” Phys. Stat. Sol. (a), vol. 53, no. 1, pp. 327–338, May 1979, doi: 10.1002/pssa.2210530138. [123] K. Ueno and K. Fukushima, “Changes in structure and chemical composition of α MoTe 2 and β-MoTe 2 during heating in vacuum conditions,” Appl. Phys. Express, vol. 8, no. 9, p. 095201, Sep. 2015, doi: 10.7567/APEX.8.095201. 105 [124] C. Ruppert, B. Aslan, and T. F. Heinz, “Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals,” Nano Lett., vol. 14, no. 11, pp. 6231–6236, Nov. 2014, doi: 10.1021/nl502557g. [125] Y. Sun et al., “Elastic Properties and Fracture Behaviors of Biaxially Deformed, Polymorphic MoTe 2,” Nano Lett., vol. 19, no. 2, pp. 761–769, Feb. 2019, doi: 10.1021/acs.nanolett.8b03833. [126] S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, and Y. H. Lee, “Room Temperature Semiconductor–Metal Transition of MoTe 2 Thin Films Engineered by Strain,” Nano Lett., vol. 16, no. 1, pp. 188–193, Jan. 2016, doi: 10.1021/acs.nanolett.5b03481. [127] J. Guo and K. Liu, “Recent Progress in Two-Dimensional MoTe2 Hetero-Phase Homojunctions,” Nanomaterials, vol. 12, no. 1, p. 110, Dec. 2021, doi: 10.3390/nano12010110. [128] Q. Zhang et al., “Simultaneous synthesis and integration of two-dimensional electronic components,” Nat Electron, vol. 2, no. 4, pp. 164–170, Apr. 2019, doi: 10.1038/s41928- 019-0233-2. [129] R. Ma et al., “MoTe 2 Lateral Homojunction Field-Effect Transistors Fabricated using Flux-Controlled Phase Engineering,” ACS Nano, vol. 13, no. 7, pp. 8035–8046, Jul. 2019, doi: 10.1021/acsnano.9b02785. [130] H. R. Gutiérrez et al., “Extraordinary Room-Temperature Photoluminescence in Triangular WS 2 Monolayers,” Nano Lett., vol. 13, no. 8, pp. 3447–3454, Aug. 2013, doi: 10.1021/nl3026357. [131] N. Thomas et al., “2D MoS2: structure, mechanisms, and photocatalytic applications,” Materials Today Sustainability, vol. 13, p. 100073, Sep. 2021, doi: 10.1016/j.mtsust.2021.100073. [132] W. Zhang, Z. Huang, W. Zhang, and Y. Li, “Two-dimensional semiconductors with possible high room temperature mobility,” Nano Res., vol. 7, no. 12, pp. 1731–1737, Dec. 2014, doi: 10.1007/s12274-014-0532-x. [133] F. Zhang et al., “Carbon doping of WS 2 monolayers: Bandgap reduction and p-type doping transport,” Sci. Adv., vol. 5, no. 5, p. eaav5003, May 2019, doi: 10.1126/sciadv.aav5003. [134] M. Siao et al., “Embedment of Multiple Transition Metal Impurities into WS 2 Monolayer for Bandstructure Modulation,” Small, vol. 17, no. 17, p. 2007171, Apr. 2021, doi: 10.1002/smll.202007171. 106 [135] H. R. Gutiérrez et al., “Extraordinary Room-Temperature Photoluminescence in Triangular WS 2 Monolayers,” Nano Lett., vol. 13, no. 8, pp. 3447–3454, Aug. 2013, doi: 10.1021/nl3026357. [136] X. Xu et al., “Different optical characteristics between monolayer and bilayer WS2 due to interlayer interaction,” Optik, vol. 251, p. 168374, Feb. 2022, doi: 10.1016/j.ijleo.2021.168374. [137] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS 2 : A New Direct-Gap Semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, p. 136805, Sep. 2010, doi: 10.1103/PhysRevLett.105.136805. [138] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS 2 : A New Direct-Gap Semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, p. 136805, Sep. 2010, doi: 10.1103/PhysRevLett.105.136805. [139] Y. Y. Hui et al., “Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS2 Sheet,” ACS Nano, vol. 7, no. 8, pp. 7126–7131, Aug. 2013, doi: 10.1021/nn4024834. [140] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, 2. ed. in Computational science series, no. 1. San Diego: Acad. Press, 2002. [141] “An adaptive control scheme for multi-threaded graphics programs”. [142] “Calendar,” Computers in Physics, vol. 7, no. 6, pp. 621–623, Nov. 1993, doi: 10.1063/1.4823232. [143] S. Goel et al., “Horizons of modern molecular dynamics simulation in digitalized solid freeform fabrication with advanced materials,” Materials Today Chemistry, vol. 18, p. 100356, Dec. 2020, doi: 10.1016/j.mtchem.2020.100356. [144] Y. Chen, D. Li, J. R. Lukes, and A. Majumdar, “Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity,” Journal of Heat Transfer, vol. 127, no. 10, pp. 1129– 1137, Oct. 2005, doi: 10.1115/1.2035114. [145] M. Khraisheh, S. Elhenawy, F. AlMomani, M. Al-Ghouti, M. K. Hassan, and B. H. Hameed, “Recent Progress on Nanomaterial-Based Membranes for Water Treatment,” Membranes, vol. 11, no. 12, p. 995, Dec. 2021, doi: 10.3390/membranes11120995. [146] P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels,” Phys. Rev., vol. 34, no. 1, pp. 57–64, Jul. 1929, doi: 10.1103/PhysRev.34.57. [147] B. Bourdon, P. Di Marco, R. Rioboo, M. Marengo, and J. De Coninck, “Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces,” 107 International Communications in Heat and Mass Transfer, vol. 45, pp. 11–15, Jul. 2013, doi: 10.1016/j.icheatmasstransfer.2013.04.009. [148] B. Bourdon, E. Bertrand, P. Di Marco, M. Marengo, R. Rioboo, and J. De Coninck, “Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces,” Advances in Colloid and Interface Science, vol. 221, pp. 34– 40, Jul. 2015, doi: 10.1016/j.cis.2015.04.004. [149] F. Ercolessi and J. B. Adams, “Interatomic Potentials from First-Principles Calculations: The Force-Matching Method,” Europhys. Lett., vol. 26, no. 8, pp. 583–588, Jun. 1994, doi: 10.1209/0295-5075/26/8/005. [150] G. Nagayama, T. Tsuruta, and P. Cheng, “Molecular dynamics simulation on bubble formation in a nanochannel,” International Journal of Heat and Mass Transfer, vol. 49, no. 23–24, pp. 4437–4443, Nov. 2006, doi: 10.1016/j.ijheatmasstransfer.2006.04.030. [151] Y. Zou and X. Huai, “Molecular Dynamics Simulation for Homogenous Nucleation of Water and Liquid Nitrogen in Explosive Boiling,” in Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C, Lake Buena Vista, Florida, USA: ASMEDC, Jan. 2009, pp. 1735–1740. doi: 10.1115/IMECE2009-13154. [152] J. M. Combes, P. Duclos, and R. Seiler, “The Born-Oppenheimer Approximation,” in Rigorous Atomic and Molecular Physics, G. Velo and A. S. Wightman, Eds., Boston, MA: Springer US, 1981, pp. 185–213. doi: 10.1007/978-1-4613-3350-0_5. [153] D. A. Damasceno, E. Mesquita, and R. N. K. D. Rajapakse, “Mechanical Behavior of Nano Structures Using Atomic-Scale Finite Element Method (AFEM),” Lat. Am. j. solids struct., vol. 14, no. 11, pp. 2046–2066, 2017, doi: 10.1590/1679-78254050. [154] M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B, vol. 29, no. 12, pp. 6443– 6453, Jun. 1984, doi: 10.1103/PhysRevB.29.6443. [155] M. S. Daw, S. M. Foiles, and M. I. Baskes, “The embedded-atom method: a review of theory and applications,” Materials Science Reports, vol. 9, no. 7–8, pp. 251–310, Mar. 1993, doi: 10.1016/0920-2307(93)90001-U. [156] J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Phys. Rev. B, vol. 39, no. 8, pp. 5566–5568, Mar. 1989, doi: 10.1103/PhysRevB.39.5566. 108 [157] D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Phys. Rev. B, vol. 42, no. 15, pp. 9458–9471, Nov. 1990, doi: 10.1103/PhysRevB.42.9458. [158] A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “ReaxFF: A Reactive Force Field for Hydrocarbons,” J. Phys. Chem. A, vol. 105, no. 41, pp. 9396–9409, Oct. 2001, doi: 10.1021/jp004368u. [159] M. A. González, “Force fields and molecular dynamics simulations,” JDN, vol. 12, pp. 169–200, 2011, doi: 10.1051/sfn/201112009. [160] D. J. Adams, E. M. Adams, and G. J. Hills, “The computer simulation of polar liquids,” Molecular Physics, vol. 38, no. 2, pp. 387–400, Aug. 1979, doi: 10.1080/00268977900101751. [161] H. Abe et al., “Direct Evidence of Confined Water in Room-Temperature Ionic Liquids by Complementary Use of Small-Angle X-ray and Neutron Scattering,” J. Phys. Chem. Lett., vol. 5, no. 7, pp. 1175–1180, Apr. 2014, doi: 10.1021/jz500299z. [162] D. Frenkel and B. Smit, Eds., Understanding molecular simulation: from algorithms to applications, 2nd ed. in Computational science series, no. 1. San Diego: Academic Press, 2002. [163] A. P. Thompson et al., “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Computer Physics Communications, vol. 271, p. 108171, Feb. 2022, doi: 10.1016/j.cpc.2021.108171. [164] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO– the Open Visualization Tool,” Modelling Simul. Mater. Sci. Eng., vol. 18, no. 1, p. 015012, Jan. 2010, doi: 10.1088/0965-0393/18/1/015012. [165] S. Jo, T. Kim, V. G. Iyer, and W. Im, “CHARMM‐GUI: A web‐based graphical user interface for CHARMM,” J Comput Chem, vol. 29, no. 11, pp. 1859–1865, Aug. 2008, doi: 10.1002/jcc.20945. [166] W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, Feb. 1996, doi: 10.1016/0263- 7855(96)00018-5. [167] P. Hirel, “Atomsk: A tool for manipulating and converting atomic data files,” Computer Physics Communications, vol. 197, pp. 212–219, Dec. 2015, doi: 10.1016/j.cpc.2015.07.012. 109 [168] K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J Appl Crystallogr, vol. 44, no. 6, pp. 1272–1276, Dec. 2011, doi: 10.1107/S0021889811038970. [169] P. Hirel, “Atomsk: A tool for manipulating and converting atomic data files,” Computer Physics Communications, vol. 197, pp. 212–219, Dec. 2015, doi: 10.1016/j.cpc.2015.07.012. [170] K. Momma and F. Izumi, “VESTA : a three-dimensional visualization system for electronic and structural analysis,” J Appl Crystallogr, vol. 41, no. 3, pp. 653–658, Jun. 2008, doi: 10.1107/S0021889808012016. [171] K. Chenoweth, A. C. T. Van Duin, and W. A. Goddard, “ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation,” J. Phys. Chem. A, vol. 112, no. 5, pp. 1040–1053, Feb. 2008, doi: 10.1021/jp709896w. [172] T.-R. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott, and S. R. Phillpot, “Charge optimized many-body potential for the hafnium/hafnium oxide system,” Phys. Rev. B, vol. 81, no. 12, p. 125328, Mar. 2010, doi: 10.1103/PhysRevB.81.125328. [173] S. J. Plimpton and C. Knight, “Rendezvous algorithms for large-scale modeling and simulation,” Journal of Parallel and Distributed Computing, vol. 147, pp. 184–195, Jan. 2021, doi: 10.1016/j.jpdc.2020.09.001. [174] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO– the Open Visualization Tool,” Modelling Simul. Mater. Sci. Eng., vol. 18, no. 1, p. 015012, Jan. 2010, doi: 10.1088/0965-0393/18/1/015012. [175] L. T. Kong, “Phonon dispersion measured directly from molecular dynamics simulations,” Computer Physics Communications, vol. 182, no. 10, pp. 2201–2207, Oct. 2011, doi: 10.1016/j.cpc.2011.04.019. [176] P. K. Schelling, S. R. Phillpot, and P. Keblinski, “Comparison of atomic-level simulation methods for computing thermal conductivity,” Phys. Rev. B, vol. 65, no. 14, p. 144306, Apr. 2002, doi: 10.1103/PhysRevB.65.144306. [177] G. Chen, “Phonon heat conduction in nanostructures,” International Journal of Thermal Sciences, vol. 39, no. 4, pp. 471–480, Apr. 2000, doi: 10.1016/S1290- 0729(00)00202-7. [178] R. J. Warzoha et al., “Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging,” Journal of Electronic Packaging, vol. 143, no. 2, p. 020804, Jun. 2021, doi: 10.1115/1.4049293. 110 [179] W. Kim, R. Wang, and A. Majumdar, “Nanostructuring expands thermal limits,” Nano Today, vol. 2, no. 1, pp. 40–47, Feb. 2007, doi: 10.1016/S1748-0132(07)70018-X. [180] J. Bodzenta, “Nanoscale heat transport,” Materials Science-Poland, vol. 26, Jan. 2008. [181] M. Hu and D. Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity,” Nano Lett., vol. 12, no. 11, pp. 5487–5494, Nov. 2012, doi: 10.1021/nl301971k. [182] A. I. Hochbaum and P. Yang, “Semiconductor Nanowires for Energy Conversion,” Chem. Rev., vol. 110, no. 1, pp. 527–546, Jan. 2010, doi: 10.1021/cr900075v. [183] N. Yang, G. Zhang, and B. Li, “Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires,” Nano Today, vol. 5, no. 2, pp. 85–90, Apr. 2010, doi: 10.1016/j.nantod.2010.02.002. [184] J. Maassen and M. Lundstrom, “Steady-state heat transport: Ballistic-to-diffusive with Fourier’s law,” Journal of Applied Physics, vol. 117, no. 3, p. 035104, Jan. 2015, doi: 10.1063/1.4905590. [185] C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, “Breakdown of Fourier’s Law in Nanotube Thermal Conductors,” Phys. Rev. Lett., vol. 101, no. 7, p. 075903, Aug. 2008, doi: 10.1103/PhysRevLett.101.075903. [186] “Nanoscale phonon thermal conductivity via molecular dynamics”. [187] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1–19, Mar. 1995, doi: 10.1006/jcph.1995.1039. [188] J. Zhang et al., “Phonon Thermal Properties of Transition-Metal Dichalcogenides MoS 2 and MoSe 2 Heterostructure,” J. Phys. Chem. C, vol. 121, no. 19, pp. 10336–10344, May 2017, doi: 10.1021/acs.jpcc.7b02547. [189] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations,” J. Am. Chem. Soc., vol. 114, no. 25, pp. 10024–10035, Dec. 1992, doi: 10.1021/ja00051a040. [190] M. Zhang, G. H. Tang, Y. F. Li, B. Fu, and X. Y. Wang, “Phonon Thermal Properties of Heterobilayers with a Molecular Dynamics Study,” Int J Thermophys, vol. 41, no. 5, p. 57, May 2020, doi: 10.1007/s10765-020-02627-6. 111 [191] B. Liu et al., “Thermal transport in a graphene–MoS 2 bilayer heterostructure: a molecular dynamics study,” RSC Adv., vol. 5, no. 37, pp. 29193–29200, 2015, doi: 10.1039/C4RA16891G. [192] D. Han et al., “Phonon thermal conduction in a graphene–C 3 N heterobilayer using molecular dynamics simulations,” Nanotechnology, vol. 30, no. 7, p. 075403, Feb. 2019, doi: 10.1088/1361-6528/aaf481

Collections

Endorsement

Review

Supplemented By

Referenced By